Impact-Angle Constraint Guidance and Control Strategies Based on Deep Reinforcement Learning

Author:

Fan Junfang12ORCID,Dou Denghui3ORCID,Ji Yi1ORCID

Affiliation:

1. School of Automation, Beijing Information Science & Technology University, Beijing 100192, China

2. Beijing Key Laboratory of High Dynamic Navigation Technology, Beijing Information Science & Technology University, Beijing 100192, China

3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

In this study, two different impact-angle-constrained guidance and control strategies using deep reinforcement learning (DRL) are proposed. The proposed strategies are based on the dual-loop and integrated guidance and control types. To address comprehensive flying object dynamics and the control mechanism, a Markov decision process is used to solve the guidance and control problem, and a real-time impact-angle error in the state vector is used to improve the model applicability. In addition, a reasonable reward mechanism is designed based on the state component which reduces both the miss distance and the impact-angle error and solves the problem of sparse rewards in DRL. Further, to overcome the negative effects of unbounded distributions on bounded action spaces, a Beta distribution is used instead of a Gaussian distribution in the proximal policy optimization algorithm for policy sampling. The state initialization is then realized using a sampling method adjusted to engineering backgrounds, and the control strategy is adapted to a wide range of operational scenarios with different impact angles. Simulation and Monte Carlo experiments in various scenarios show that, compared with other methods mentioned in the experiment in this paper, the proposed DRL strategy has smaller impact-angle errors and miss distance, which demonstrates the method’s effectiveness, applicability, and robustness.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Project of Construction and Support for High-level Innovative Teams of Beijing Municipal Institutions

Young Elite Scientist Sponsorship Program by BAST

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3