Metric for Structural Complexity Assessment of Space Systems Modeled Using the System Modeling Language

Author:

Lopez Victor Emmanuel PierreORCID,Thomas Lawrence DaleORCID

Abstract

A complexity metric is proposed for the quantification of system complexity using information about the composition of a system and its interactions depicted in a System Modelling Language (SysML) model. The proposed metric is adapted from the complexity metric developed for design structure matrix (DSM) applications and was modified to allow the metric to be applied at different decomposition levels and to accommodate the inclusion of external interactions. The metric was applied to three case studies: a Mars lander, a CubeSat and a spacecraft thermal control system. The proposed metric attributed a higher amount of complexity due to the interactions compared to the DSM metric. This variance resulted in instances where the results differed for the two metrics. Despite these differences, both metrics behaved similarly to changes in component or interaction complexity.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference24 articles.

1. A Complexity Primer for Systems Engineers;Sheard,2015

2. What is a complex system?

3. Logical Depth and Physical Complexity

4. Flexibility, Complexity, and Controllability in Large Scale Systems;Broniatowski,2014

5. Technology Insertion in Turbofan Engine and Assessment of Architectural Complexity;James;Proceedings of the 13th International Dependency and Structure Modelling Conference,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3