Numerical Investigation of the Oblique Detonation Waves and Stability in a Super-Detonative Ram Accelerator

Author:

Feng Zhanlin1,Wang Kuanliang1ORCID,Teng Honghui1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

This study numerically investigates the effects of diluent gas proportion, the overdrive factor, and throat width on the wave structure and thrust performance of a ram accelerator operating in super-detonative mode. For premixed gas of a high energy density, a typical unstart oblique detonation wave system is observed due to the ignition on the front wedge of the projectile, and the detonation waves move downstream to the shoulder as the energy density decreases. In the start range of the overdrive factor, the wave position also shows a tendency to move downstream as the projectile velocity increases, accompanied by oscillations of the wave surface and thrust. As the throat width increases, the wave standing position changes non-monotonously, with an interval of upstream movement and Mach reflection. The typical wave structure of a ram accelerator in super-detonative mode is identified, as well as the unstart stable wave features and the unstable process for choking, which can provide theoretical guidance for avoiding unstart issues in ram accelerators and optimizing their performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3