Analysis of NO Formation and Entropy Generation in a Reactive Flow

Author:

Mohammadi Milad,Abedinejad Mohammad SadeghORCID

Abstract

A comprehensive investigation of turbulent combustion is accomplished to study the relationship between nitrogen oxide (NO) formation and entropy generation distribution in a non-premixed propane combustion. The radiation heat transfer and combustion are simulated, employing the discrete ordinates model and laminar flamelet model, respectively. A post processing model is employed to estimate the NO formation rate. The present results of NO species formation, mean temperature and velocity are compared with the existing experimental data, and good agreements are obtained. It is shown that the main region of total entropy generation rate and NO formation rate is at the same axial position. The entropy generation distribution may be defined as an index by which the combustion region and main region of NO formation are predicted. However, total entropy generation rate is more sensitive to high temperature (1500–1930 K) than that of NO formation rate. With an increase of 28.7% in temperature, the entropy generation and NO formation rates rise by 900% and 127%, respectively. The occurrence of chemical reactions plays the major role in the generation of entropy.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3