Implementation and Verification of a Micro-Jet-Vane System of a Solid Rocket Motor for a Micro-Nano Satellite

Author:

Zhang Gang1,Feng Wen1,Tan Youwen1,Liu Yang1,Hui Weihua1

Affiliation:

1. Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

To achieve rapid vector maneuvering of a space micro-nano satellite, a micro-sized solid rocket motor was utilized as its propulsion system, and a micro-jet-vane-thrust-vector control system was devised. Computational fluid dynamics (CFD) numerical simulations were conducted on the designed micro-vane structure at various deflection angles to ascertain the lateral force and flow field characteristics. The motor’s combustion temperature is 1380 K. Therefore, materials such as 45 steel, alumina ceramics, and tungsten–molybdenum alloy were chosen for the jet vanes to carry out ground-based-motor-jet-ablation experiments and measure the ablation amount. Concurrently, experimental data, including lateral force, were gathered. The tests demonstrated that despite 45 steel having a higher melting point than the combustion temperature significant ablation still occurred. Alumina ceramics exhibited defects and experienced ablation and fragmentation post-test. In contrast, tungsten–molybdenum alloy, being a refractory metal, showed minimal ablation after testing, making it an ideal material for micro-jet vanes. At a 20° deflection of the jet vanes, the lateral force calculated via numerical simulation was 3.76 N, whereas the lateral force obtained from the test was approximately 3.8 N, resulting in an error within 1% and validating the numerical simulation’s validity and accuracy. The jet vanes can generate a maximum steering angle of 8°, thus ensuring the micro-nano satellite’s swift vector maneuvering at large angles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference35 articles.

1. Discussion on Micro-nano Satellites Industry Development;Yan;Spacecr. Eng.,2018

2. Key technologies and prospect of ionic liquid electrospray thruster;Liu;J. Astronaut.,2019

3. Ketsdever, A.D., and Micci, M.M. (2000). Micropropulsion for Small Spacecraft, American Institute of Aeronautics and Astronautics.

4. Design and Practice of Exquisite Micro-nano Satellite;Zhang;Spacecr. Eng.,2018

5. Prospects of Picosat Development;Yu;Piezoelectrics Acoustooptics,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3