Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats

Author:

Gaude Alexis,Lappas VaiosORCID

Abstract

Following a global trend towards miniaturization, the population of nano- and micro-satellite continues to increase. CubeSats are standardized small size satellites based on 10 × 10 × 10 cm cube modules (1U) and are becoming sophisticated platforms despite their very small size. This paper details the design and the structural analysis of a Control Moment Gyroscope (CMG) actuator for agile CubeSats with a physical size up to 12U, which require high torque actuators. CMGs have inherited torque amplification capabilities and the recent advances in motor miniaturization make them ideal candidates for small satellite missions with slew rate requirements. The system’s requirements are derived based on conceptual agility requirements for an agile (highly maneuverable) CubeSat which needs to achieve a 90° maneuver in 90 s. With specific cost, mass and volume requirements, the proposed CMG design is based on some of the smallest available off-the-shelf electric motors and uses a light aluminum casing design. The proposed design uses stepper motors for the gimbal mechanism as a low cost, compact and low power solution, contributing to an overall low mass of the full CMG cluster. Static and dynamic analyses were performed to assess the mechanical integrity of the system for launch loads. Apart from a necessary custom control electronic board, the complete mechanical assembly has been designed including electrical hardware. Analyses demonstrate that the overall stress levels acting on the system are manageable by the CMG design. Bolted joints are critical and should be studied independently as the chosen model created singularities around these areas. Each individual CMG of the designed pyramidal cluster is shown to weigh about 35 g. Using the proposed CMG design with a customized avionics board, the complete CMG system is shown to weigh 250 g and occupies slightly more than ½U volume for a CubeSat, indicating the feasibility of CMGs for agile CubeSats.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference23 articles.

1. Nano/Microsatellite Matket Forecast,2019

2. ESA’s ‘CubeSat Central’ for Smaller Missions into Space,2019

3. I‐2c

4. ‘QB50 ADCS and GPS Subsystem’, 3rd QB50 Workshop, Belgiumhttps://www.qb50.eu/download/3rdQB50Workshop_presentations/07-ADCS%202.2.12-Lappas-3rdQB50Workshop.pdf

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3