Invariant Kalman Filter Design for Securing Robust Performance of Magnetic–Inertial Integrated Navigation System under Measurement Uncertainty

Author:

Lee Taehoon1,Lee Byungjin2,Sung Sangkyung2

Affiliation:

1. Department of Aerospace Information Engineering, Konkuk University, Seoul 05029, Republic of Korea

2. Department of Mechanical and Aerospace Engineering, Konkuk University, Seoul 05029, Republic of Korea

Abstract

This study proposes an enhanced integration algorithm that combines the magnetic field-based positioning system (MPS—Magnetic Pose Estimation System) with an inertial system with the advantage of an invariant filter structure. Specifically, to mitigate the nonlinearity of the propagation model and perturbing effect from the estimated uncertainty, the formulation of the invariant Kalman filter was derived in detail. Then, experiments were conducted to validate the algorithm with an unmanned vehicle equipped with an IMU and MPS receiver. As a result, the navigation performance of the IEKF-based inertial and magnetic field integration system was presented and compared with the conventional Kalman filter results. Furthermore, the convergence and navigation performance were evaluated in the presence of state variable initialization errors. The findings indicate that the inertial and magnetic field coupled with the IEKF outperforms the typical KF approach, particularly when dealing with initial estimate uncertainties.

Funder

Konkuk University Premier Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3