Parametric Investigation of Leading-Edge Slats on a Blended-Wing-Body UAV Using the Taguchi Method

Author:

Antoniou Spyridon12ORCID,Kapsalis Stavros12ORCID,Panagiotou Pericles12,Yakinthos Kyros12ORCID

Affiliation:

1. Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. UAV Integrated Research Center (UAV-iRC), Center for Interdisciplinary Research and Innovation (CIRI), Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece

Abstract

The current study investigated the effect of leading-edge slats on the longitudinal stability at high angles of attack of a Blended-Wing-Body (BWB) Unmanned Air Vehicle (UAV). Using a Design of Experiments (DOE) approach and, specifically, the Taguchi method, four leading-edge slat design parameters were investigated on three different levels. These parameters were the slat semi-span, the rotation of the slat element, the extension forward of the leading edge and the downward drop below the leading edge. An L9 orthogonal array (OA) was used to investigate the influence of these key design parameters using three performance criteria, namely the angle at which pitch break occurs, the corresponding speed and the distance between the Neutral point of each configuration and the Neutral point of the reference platform. The investigation was conducted by using high-fidelity Computational Fluid Dynamics (CFD) methods for each of the nine configurations defined by the L9 OA, over a range of angles of attack between −4 and 16 degrees. Based on these results, and using a Signal-to-Noise ratio (SNR) analysis, two combinations were eventually derived, one that optimized pitch break angle and speed and one that optimized longitudinal stability. Finally, the Pareto Analysis of Variance (ANOVA) technique was conducted to define the contribution of each of the six design parameters on the selected performance criteria. More specifically, the semi-span seemed to have the most significant effect on pitch break angle and speed, whereas the rotation of the slat element was the most important parameter with regard to static stability.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3