A Zonal Detached Eddy Simulation of the Trailing Edge Stall Process of a LS0417 Airfoil

Author:

Shi Wenbo1,Zhang Heng2,Li Yuanxiang3

Affiliation:

1. School of Defense Science and Technology, Xi’an Technological University, Xi’an 710021, China

2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

3. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

A Zonal Detached Eddy Simulation (ZDES) based on the SST turbulence model is implemented to the numerical investigation of the trailing edge stall of a LS-0417 airfoil, which includes multiple DES modes for different classifications of flow separation and adopts the subgrid scale definition of Δω. The entire stall process under a series of AOA is simulated according to the experiment condition. The performance of URANS and ZDES in the prediction of the stall flow field are compared. The results reveal that the stall point obtained through ZDES is consistent with the experiment; the deviation of the predicted maximum lift coefficient from the measured result is only 0.8%, while the maximum lift is overpredicted by both RANS and URANS. The high frequency fluctuations are observed in the time history of the lift in ZDES result during stall. With the increase in the AOA, a mild development of separation and a gradual decrease in leading edge peak suction are manifested in the ZDES result. The alternate shedding of shear layers and the interference between the leading edge and trailing edge vortices are illustrated through ZDES near the stall point; the corresponding turbulent fluctuations with high intensity are captured in the separation region, which indicates the essential difference in the prediction of stall process between URANS and ZDES.

Funder

National Natural Science Foundation of China

Key Laboratory of Icing and Anti/De-icing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3