Calculation and Selection of Airfoil for Flapping-Wing Aircraft Based on Integral Boundary Layer Equations

Author:

Qi Ming1,Zhu Wenguo2ORCID,Li Shu1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

2. Norinco Group Institute of Navigation and Control Technology, Beijing 100191, China

Abstract

The flight of a migratory bird-like flapping-wing aircraft is characterized by a low Reynolds number and unsteadiness. The selection of airfoil profiles is critical to designing an efficient flapping-wing aircraft. To choose the suitable airfoil for various wing sections, it is necessary to calculate the aerodynamic forces of the unsteady two-dimensional airfoil with a Reynolds number in the range of 105. While accurate, calculating this by solving the Navier–Stokes equations is impractical for early design stages due to its high consumption of computing resources and time. The computational demands for extending it to 3D aerodynamic calculations are even more prohibitive. In this paper, a relatively simple method is proposed. The two-dimensional unsteady panel method is utilized to derive the inviscid flow field, the unsteady integral boundary layer method is utilized to solve the boundary layer viscous flow, and the eN transition model is adopted to predict the position of the transition. These models are coupled with the semi-inverse interaction method to solve the aerodynamics of the unsteady low-Reynolds-number two-dimensional airfoil. The unsteady aerodynamics of the symmetric and cambered airfoils at different wing sections are calculated respectively by the proposed method. Mechanism analysis of the calculation results is conducted, and a symmetrical airfoil or a slightly cambered airfoil is recommended for the wing tip, a moderately cambered airfoil is suggested for the outer-wing section, and a highly cambered airfoil is suggested for the inner-wing section.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3