Airfoil Lift Coefficient Optimization Using Genetic Algorithm and IGP Parameterization: Volume 1

Author:

Tejeda-del-Cueto María Elena12ORCID,Flores-Alfaro Manuel Alberto1,Toledo-Velázquez Miguel3,Santos-Cortes Lorena del Carmen1,Hernández-Hernández José12,Vigueras-Zúñiga Marco Osvaldo12

Affiliation:

1. Faculty of Engineering of the Construction and Habitat, Universidad Veracruzana, Veracruz 94299, Mexico

2. Mechanical Engineering Department, Universidad Veracruzana, Veracruz 94294, Mexico

3. Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP), IPN-ESIME Zacatenco, Mexico City 07738, Mexico

Abstract

The objective of this study is to develop a genetic algorithm that uses the IGP parameterization to increase the lift coefficient (CL) of three airfoils to be used on wings of unmanned aerial vehicles (UAVs). The geometry of three baseline airfoils was modified by developing a genetic algorithm that operates with the IGP parameterization and performs the aerodynamic analysis using XFOIL in the MATLAB environment. Subsequently, a numerical model was made for each baseline and optimized airfoil using a commercial computational fluid dynamics (CFD) code to analyze the behavior of the lift coefficient. An increase in the average CL was obtained for the Eppler 68, MH 70, and Wortmann FX 60-126 airfoils for angles of attack ranging from 0 to 10, obtaining increments of 17.243%, 14.967%, and 10.708%, respectively. Additionally, an average 5.027% uncertainty was obtained in lift coefficient calculations between XFOIL and CFD. The utility of the IGP method and genetic algorithms for parameterizing and optimizing airfoils was demonstrated. In addition, airfoils could be tailored for a specific UAV depending on the mission profile. Volume 2 of this study will include experimental data from wind tunnel.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3