Robust Trajectory Prediction Using Random Forest Methodology Application to UAS-S4 Ehécatl

Author:

Hashemi Seyed Mohammad1ORCID,Botez Ruxandra Mihaela1ORCID,Ghazi Georges1

Affiliation:

1. Laboratory of Applied Research in Active Controls, Avionics, and AeroServoElasticity LARCASE, École de Technologie Supérieure (ÉTS), Université de Québec, Montréal, QC H3C 1K3, Canada

Abstract

Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodology for predicting aircraft trajectories. The study compares the RF approach with two established data-driven models, specifically Long Short-Term Memory (LSTM) and Logistic Regression (LR). The investigation utilizes a significant dataset comprising aircraft trajectory time history data, obtained from a UAS-S4 simulator. Experimental results indicate that within a short-term prediction horizon, the RF methodology surpasses both LSTM and LR in trajectory prediction accuracy and also its robustness to overfitting. The research further fine-tunes the performance of the RF methodology by optimizing various hyperparameters, including the number of estimators, features, depth, split, and leaf. Consequently, these results underscore the viability of the RF methodology as a proven alternative to LSTM and LR models for short-term aircraft trajectory prediction.

Funder

NSERC within the Canada Research Chairs program

Publisher

MDPI AG

Reference51 articles.

1. Guaranteed performance design for formation tracking and collision avoidance of multiple USVs with disturbances and unmodeled dynamics;Ghommam;IEEE Syst. J.,2020

2. Ollero, A., and Maza, I. (2007). Multiple Heterogeneous Unmanned Aerial Vehicles, Springer.

3. Hashemi, S.M. (2022). Novel Trajectory Prediction and Flight Dynamics Modelling and Control Based on Robust Artificial Intelligence Algorithms for the UAS-S4, École de Technologie Supérieure.

4. Hashemi, S., Botez, R.M., and Ghazi, G. (2023, January 12–16). Comparison Study between PoW and PoS Blockchains for Unmanned Aircraft System Traffic Management. Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA.

5. New methodology for aircraft performance model identification for flight management system applications;Ghazi;J. Aerosp. Inf. Syst.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3