Real Gas Effects on Receptivity to Roughness in Hypersonic Swept Blunt Flat-Plate Boundary Layers

Author:

Yin Yanxin12ORCID,Lu Ruiyang1ORCID,Liu Jianxin34,Huang Zhangfeng1

Affiliation:

1. Department of Mechanics, Tianjin University, Tianjin 300072, China

2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

3. State Key Laboratory of Aerodynamics, Mianyang 621000, China

4. Lab of High-Speed Aerodynamics, Tianjin University, Tianjin 300072, China

Abstract

Temperatures within the boundary layers of high-enthalpy hypersonic flows can soar to thousands or even tens of thousands of degrees, leading to significant real gas phenomena. Although there has been significant research on real gas effects on hypersonic boundary layer stability, their impact on the boundary layer’s receptive stage is still poorly understood. Most aerodynamic boundary layers in flight vehicles are three-dimensional. Because of complex geometry and significant crossflow effects, the crossflow mode in three-dimensional boundary layers is crucial in hypersonic vehicle design. In this study, a linear stability analysis (LST) accounting for chemical nonequilibrium effects (CNE) and its adjoint form (ALST) is developed to investigate the real gas effects on the stability and receptivity of stationary crossflow modes. The results indicate that real gas effects significantly influence the receptivity of stationary crossflow modes. Specifically, chemical nonequilibrium effects destabilize the crossflow modes but reduce the receptivity coefficients of the stationary crossflow modes. The Mach number effect was also investigated. It was found that increasing the Mach number stabilizes the stationary crossflow modes, but the receptivity coefficients increase. As the Mach number progressively rises, these effects alternately dominate, leading to a non-monotonic shift in the transition position.

Funder

State Key Laboratory of Aerodynamics Funding

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3