Abstract
A convex corner models the upper surface of a deflected flap and shock-induced boundary layer separation occurs at transonic speeds. This study uses micro-vortex generators (MVGs) for flow control. An array of MVGs (counter-rotating vane type, ramp type and co-rotating vane type) with a height of 20% of the thickness of the incoming boundary layer is installed upstream of a convex corner. The surface pressure distributions are similar regardless of the presence of MVGs. They show mild upstream expansion, a strong favorable pressure gradient near the corner’s apex and downstream compression. A corrugated surface oil flow pattern is observed in the presence of MVGs and there is an onset of compression moving downstream. The counter-rotating vane type MVGs produce a greater reduction in peak pressure fluctuations and the ramp type decreases the separation length. The presence of MVGs stabilizes the shock and shock oscillation is damped.
Funder
Ministry of Science and Technology, Taiwan
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献