Spherical Formation Tracking Control of Non-Holonomic UAVs with State Constraints and Time Delays

Author:

Ai Xiang12ORCID,Zhang Ya12,Chen Yang-Yang12ORCID

Affiliation:

1. School of Automation, Southeast University, Nanjing 210096, China

2. Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, China

Abstract

This paper addresses a novel spherical formation tracking control problem of multiple UAVs with time-varying delays in the directed communication network, where the dynamics of each UAV is non-holonomic and in the presence of spatiotemporal flowfields. The state constraints (that is, position and velocity constraints) are derived from our previous differential geometry method and the F–S formulas. The state constraints and time delays in the directed communication network bring many difficulties to controller design. To this end, a virtual-structure-like design is given to achieve a formation with delayed information by using Lyapunov–Krasovskii functionals, and then proposing a barrier Lyapunov function for the satisfaction of state constraints to design a novel spherical formation tracking algorithm. The general assumption of the rate of change of time-varying delays, and a certain initial position and velocity adjustment range are given. Simulation results show the feasibility and effectiveness of the proposed algorithm.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3