Dynamic Behavior of Satellite and Its Solar Arrays Subject to Large-Scale Antenna Deployment Shock

Author:

Zhang Jie1,Wu Pengfei2,Han Qinghu1,Wei Xin1,Duan Yi3ORCID

Affiliation:

1. Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing 100094, China

2. Institute of Navigation and Control, NORINCO Group, Beijing 100089, China

3. Tech X Academy, Shenzhen Polytechnic University, Shenzhen 518055, China

Abstract

Satellites should be equipped with more and more deployable, large, flexible appendages to improve their service efficiency and reduce launch costs. The spring-driven deployment method of flexible appendages has been widely applied and generates great instantaneous shock loads on satellites, maybe affecting the safety of other flexible appendages, but the current related investigations for satellites with multiple large flexible appendages are insufficient. In this study, the deployment test of the antenna itself was conducted, and the attitude changes in a satellite during antenna deployment were telemetered. Then, a related dynamical model of the satellite was established and verified by the telemetry values of the satellite. Finally, the shock mechanism transmitted to solar arrays was analyzed, and the effect of solar array attitude was discussed. The results show that the simulated method of antenna deployment equivalent to the shock loads tested was thought to be efficient, though it could cause a small non-zero constant of the simulated angular velocities in the antenna deployment direction. The shock-induced moments, except the rotation direction of the solar array drive assembly (SADA), should be highlighted for the antenna deployment dynamic design of satellites, and the solar array attitude has few effects on the shock-induced loads at the SADA.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3