Range-Based Reactive Deployment of a Flying Robot for Target Coverage

Author:

Lyu Mingyang,Zhao Yibo,Huang HailongORCID

Abstract

Flying robots, also known as drones and unmanned aerial vehicles (UAVs), have found numerous applications in civilian domains thanks to their excellent mobility and reduced cost. In this paper, we focus on a scenario of a flying robot monitoring a set of targets, which are assumed to be moving as a group, to which the sparse distribution of the targets is not applicable. In particular, the problem of finding the optimal position for the flying robot such that all the targets can be monitored by the on-board ground facing camera is considered. The studied problem can be formulated as the conventional smallest circle problem if all the targets’ locations are given. Because it may be difficult to obtain the locations in practice, such as in Global Navigation Satellite Systems (GNSS) dined environments, a range-based navigation algorithm based on the sliding mode control method is proposed. This algorithm navigates the flying robot toward the farthest target dynamically, using the estimated robot–target distances from the received signal strength, until the maximum robot–target distance cannot be further reduced. It is light computation and easily implementable, and both features help to improve the energy efficiency of the flying robot because no heavy computation is required and no special sensing device needs to be installed on the flying robot. The presented solution does not directly solve the smallest circle problem. Instead, our proposed method dynamically navigates the flying robot to the center of the group of targets using the extracted distance information only. Simulations in Matlab and Gazebo have been conducted for both stationery and mobile targets to verify the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3