A Novel Optimization Strategy for Reducing the Initial Error of a Quasi-Steady Algorithm for Conjugate Heat Transfer

Author:

Zhao Banghua1,Dong Sujun1,Ding Chen2,Cui Zhiliang3

Affiliation:

1. School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

3. China Academy of Launch Vehicle Technology, Beijing 100070, China

Abstract

The present study proposes a novel optimization strategy (NOS) for quasi-steady algorithms to optimize the initial error in the fast calculation of conjugate heat transfer (CHT) simulations. In this approach, the change in Nusselt number at the fluid–solid coupling interface is dynamically monitored, and the update of the flow field is turned off according to a given Nusselt variation standard to speed up the solution of the transient temperature field. The NOS has been applied to problems of convective heat transfer in solid parts with internal heat sources. The feasibility of NOS is first verified by using an undisturbed boundary example, and the results show that the optimization strategy reduces the initial error by 92.3% compared with the quasi-steady algorithm, and the calculation time is reduced by 50% compared with the traditional coupling algorithm. The NOS is then combined with the quasi-steady algorithm, and boundary transient disturbances are added to the case. The results indicate that the computational time for NOS and the quasi-steady algorithm is 2.6 and 2.9 times greater than that of traditional algorithms. Nevertheless, NOS significantly optimizes the relative error of the quasi-steady algorithm by 97.3% during the initial computation phase.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3