Critical Sample-Size Analysis for Uncertainty Aerodynamic Evaluation of Compressor Blades with Stagger-Angle Errors

Author:

Wang Haohao12,Gao Limin12,Wu Baohai3

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China

2. National Key Laboratory of Aerodynamic Design and Research, Xi’an 710129, China

3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Many probability-based uncertainty quantification (UQ) schemes require a large amount of sampled data to build credible probability density function (PDF) models for uncertain parameters. Unfortunately, the amounts of data collected as to compressor blades of aero-engines are mostly limited due to the expensive and time-consuming tests. In this paper, we develop a preconditioner-based data-driven polynomial chaos (PDDPC) method that can efficiently deal with uncertainty propagation of limited amounts of sampled data. The calculation accuracy of a PDDPC method is closely related to the sample size of collected data. Therefore, the influence of sample size on this PDDPC method is investigated using a nonlinear test function. Subsequently, we consider the real manufacturing errors in stagger angles for compressor blades. Under three different operating conditions, the PDDPC method is applied to investigate the effect of stagger-angle error on UQ results of multiple aerodynamic parameters of a two-dimensional compressor blade. The results show that as the sample-size of measured data increases, UQ results regarding aerodynamic performance obtained by the PDDPC method gradually converge. There exists a critical sample size that ensures accurate UQ analysis of compressor blades. The probability information contained in the machining error data is analyzed through Kullback–Leibler divergence, and the critical sample size is determined. The research results can serve as a valuable reference for the fast and cheap UQ analysis of compressor blades in practical engineering.

Funder

National Natural Science Foundation of China

Northwestern Polytechnical University

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3