Flow Coefficient and Starting Performance Prediction of Variable Geometry Curved Axisymmetric Inlet

Author:

Li Yongzhou1,Sun Di1,Wu Zejun1,Zhang Kunyuan2

Affiliation:

1. College of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China

2. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

With the development of combined cycle engines, it is urgent to estimate more quickly and accurately the flow capture capacity and starting performance of variable geometry inlets over a wide Mach number range. Based on the flow field and parameter fitting, two prediction methods for the curved axisymmetric inlet with lip translation scheme have been proposed. The method based on the flow field of the reference inlet is more efficient than the parameters-based prediction method, as it can accurately predict the lip translation distance and the corresponding flow coefficient over the entire working range of the inlet without additional numerical calculations. Moreover, the starting Mach number is accurately predicted by the fitting method based on the throat Mach number of the reference inlet, with a relative error of only 0.95% compared to the numerical simulation. The flow coefficient-based method is simple and accurate for predicting lip translation distances with a known starting Mach number, with a relative error of only 1.65% compared to numerical simulations. The prediction approaches can overcome the drawbacks of the standard iterative algorithms and significantly enhance computational accuracy and efficiency.

Funder

National Natural Science Foundation of China

Jiangxi Province Innovation Leading Talent Project

Open Fund for the Key Laboratory of Aeroengine Thermal Environment and Thermal Structure

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3