Criticality for Oblique Detonation Waves Induced by a Finite Wedge in a Hydrogen–Air Mixture

Author:

Qin Jianxiu1,Zhu Dehua1

Affiliation:

1. China Academy of Aerospace Aerodynamics, Beijing 100074, China

Abstract

Two-dimensional oblique detonation waves (ODWs) induced by finite wedges in a stoichiometric hydrogen–air mixture have been investigated numerically based on reactive Euler equations with a detailed chemical reaction model. The main zone affected by the expansion wave emanating from the turning point of a wedge is the flowfield downstream of the intersection point of the oblique shock wave (OSW) and the expansion wave. The ODW would be reduced to Chapman–Jouguet (CJ) detonation or decoupled combustion downstream. Three combustion regimes, detonation, decoupled combustion, and no ignition, were observed successively, as the wedge length decreases. It is found that the location of the intersection point is a key parameter for the detonation initiation. When the intersection point is located upstream of the ODW transition point, the expansion wave may quench ODW. Then, the critical wedge length is obtained by theoretical analysis of wave structures and the initiation criterion of ODWs for finite wedges is proposed. When the wedge length is greater than the critical wedge length, ODWs can be initiated. On the contrary, the initiation of ODWs do not occur. For wedge lengths small enough, no ignition occurs. Previously proposed criteria that use the induction length are also examined and compared with the present critical wedge length criterion in this study, and the latter is proven to achieve better results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3