FMI-Based Multi-Domain Simulation for an Aero-Engine Control System

Author:

Fang JuanORCID,Luo Maochun,Wang JiqiangORCID,Hu Zhongzhi

Abstract

The simulation of an aero-engine control system involves numerous disciplines due to its complex functions and architecture, which generally consist of mechanical, hydraulic and electrical, and electronic systems. For each discipline, the modeling and simulation are usually dependent on different commercial software and tools, which makes the simulation, integration, and verification of system-level models very difficult. To meet this challenge, a multi-domain co-simulation method based on the Functional Mock-up Interface (FMI) standard is proposed to integrate models developed by different software or tools. The simulation and testing results demonstrate that multi-disciplinary model integration and cross-platform simulation based on the FMI standard can be realized for an aero-engine control system, which lays a foundation for high-fidelity control system design, simulation, integration, and testing.

Funder

Fundamental Research Funds for the Central Universities

Central Military Commission Foundation to Strengthen Program Technology Fund

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference28 articles.

1. Research of Model-based Aeroengine Control System Design Structure and Workflow

2. Numerical Propulsion System Simulation (NPSS) 1999 Industry Review;Lytle,2000

3. Summary of CORBA Technique;Wang;Comput. Sci.,1999

4. Summary of HLA and the key technologies in simulation applications;Xu;Comput. Simul.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3