Flow Mechanism of a New Concept Transonic Tandem Fan Stage under the Design and Off-Design Conditions

Author:

Zhou ChuangxinORCID,Zhao Shengfeng,Lu Xingen

Abstract

A detailed numerical simulation of a transonic tandem fan stage was conducted, and the change rule of the flow structure inside the fan stage under the design and off-design conditions was discussed to determine the internal flow mechanisms. The results demonstrate that the total pressure ratio of the fan stage steadily increases with the rotating speed, exhibiting an approximately quadratic growth rate. The peak efficiency reaches the maximum at 80% design speed and rapidly declines under the overspeed condition. Furthermore, the peak efficiency point for different rotating speeds was investigated. The changes in the flow features, such as shock wave/boundary layer interaction and radial migration of low-energy fluids, mainly determine the isentropic efficiency at the higher span. At the middle-lower span, higher or lower inflow relative Mach number increases the flow loss. Moreover, the strength of the tip vortex and wake affect the flow loss at the lower span, while the radial motion of the former flow structure dominated by the equivalent inertial force is another essential factor. Under the high-speed condition, the gain of a high-throughflow fan on choke mass flow can be exhibited. However, the throat position causes an abnormal change under the overspeed condition.

Funder

Special Research Project of Chinese Civil Aircraft

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference25 articles.

1. Design of Advanced Transonic Fan Rotor;Goto;Proceedings of the Asian Joint Conference on Propulsion and Power,2005

2. New Concept Design and Development of an Advanced Transonic Fan Rotor;Murooka;Proceedings of the International Gas Turbine Congress,2007

3. Numerical investigation on the aerodynamic performance and flow mechanism of a fan with a partial-height booster rotor

4. The matching characteristics and flow mechanisms of partial-height booster rotor and fan rotor for a high-throughflow fan

5. Inducer/Exducer Matching Characteristics inside Tandem Impellers of a Highly Loaded Centrifugal Compressor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3