Unstable Approach Detection and Analysis Based on Energy Management and a Deep Neural Network

Author:

Chiu Tzu-Ying1,Lai Ying-Chih12ORCID

Affiliation:

1. Institute of Civil Aviation, National Cheng Kung University, Tainan 701, Taiwan

2. Department of Aeronautics and Astronautics, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

The study of managing risk in aviation is the key to improving flight safety. Compared to the other flight operation phases, the approach and landing phases are more critical and dangerous. This study aims to detect and analyze unstable approaches in Taiwan through historical flight data. In addition to weather factors such as low visibility and crosswinds, human factors also account for a large part of the risk. From the accidents studied in the stochastic report of the Flight Safety Foundation, nearly 70% of the accidents occurred during the approach and landing phases, which were caused by improper control of aircraft energy. Since the information of the flight data recorder (FDR) is regarded as the airline’s confidential information, this study calculates the aircraft’s energy-related metrics and investigates the influence of non-weather-related factors on unstable approaches through a publicly available source, automatic dependent surveillance-broadcast (ADS-B) flight data. To evaluate the influence of weather- and non-weather-related factors, the outliers of each group classified by weather labels are detected and eliminated from the analysis by applying hierarchical density-based spatial clustering of applications with noise (HDBSCAN), which is utilized for detecting abnormal flights that are spatial anomalies. The deep learning method was adopted to detect and predict unstable arrival flights landing at Taipei Songshan Airport. The accuracy of the prediction for the normalized total energy and trajectory deviation of all flights is 85.15% and 82.11%, respectively. The results show that in different kinds of weather conditions, or not considering the weather, the models have similar good performance. The input features were analyzed after the model was obtained, and the flights detected as abnormal are discussed.

Funder

National Science and Technology Council

Civil Aeronautics Administration (CAA), Ministry of Transportation and Communications

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference23 articles.

1. ICAO (2020). Global Aviation Safety Plan 2020–2022 Edition, International Civil Aviation Organization.

2. ICAO (2021). Safety Report 2021 Edition, International Civil Aviation Organization.

3. Administration, C.A. (2020). Taiwan Aviation Occurrence Statistics 2010–2019.

4. FSF (2000). ALAR Briefing Note 4.2—Energy Management, Flight Safety Foundation.

5. International Air Transport Association (2021). IATA 2021 Safety Report, International Air Transport Association.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3