Experimental Study on the Mass Flow Rate of the Self-Pressurizing Propellants in the Rocket Injector

Author:

Palacz TomaszORCID,Cieślik Jacek

Abstract

High vapor pressure propellants such as nitrous oxide are widely used in experimental hybrid and liquid rockets as they can be used in a self-pressurization mode, eliminating the need for external pressurization or pumps and simplifying the design of the rocket system. This approach causes the two-phase flow in the feed system and the injector orifices, which cannot be easily modeled and accounted for in the design. A dedicated test stand has been developed to better understand how the two-phase flow of the self-pressurizing propellant impacts the mass flow characteristics, enabling the simulation of the operating conditions in the rocket engine. The injectors have been studied in the range of ΔP. The flow regimes have been identified, which can be predicted by the SPI and HEM models. It has been shown that the two-phase flow quality upstream of the injector may impact the discharge coefficient in the SPI region and the accuracy of the HEM model. It has been found that the transition to the critical flow region depends on the L/D ratio of the injector orifice. A series of conclusions can be drawn from this work to design the rocket injector with a self-pressurizing propellant to better predict the mass flow rate and ensure stable combustion.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3