Spectral Light Curve Simulation for Parameter Estimation from Space Debris

Author:

Nussbaum MaxORCID,Schafer EwanORCID,Yoon ZizungORCID,Keil Denise,Stoll EnricoORCID

Abstract

Characterisation of space debris has become a fundamental task to facilitate sustainable space operations. Ground-based surveillance provides the means to extract key attributes from spacecraft. However, signal inversion attempts are generally under-constrained, which is why an increase in measurement channels through multispectral observations is expected to benefit parameter estimation. The current approach to simulating space debris observation at the Institute of Technical Physics of the German Aerospace Centre (DLR) in Stuttgart relies on monochromatic images taken from the POV-Ray render engine to form light curve signals. Rendered scenes are generated based on the location of an observer by propagating a target’s orbit and rotation. This paper describes the simulation of spectral light curves through the extension of DLR’s Raxus Prime simulation environment. Light reflections are computed using the Mitsuba2 spectral render engine, while atmospheric attenuation is accounted for by the radiative transfer library libRadTran. A validation of the simulator was achieved using multispectral measurements, carried out at the Uhlandshöhe research observatory in Stuttgart. Measured and synthetic data were found to be in agreement based on an RMS error <1% of the total measured signal count. Further, simulated spectral products were used to determine a target’s surface material composition and rotation state and examine aspects of laser ranging to non-cooperative targets.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference56 articles.

1. ESA’s Annual Space Environment Report,2022

2. Improving Space Object Catalog Maintenance Through Advances in Solar Radiation Pressure Modeling

3. Development of Global Policy for Active Debris Removal Services;Weeden;Proceedings of the First International Orbital Debris Conference,2019

4. Visibility aspects of passive and active optical monitoring of space debris in low earth orbits;Buske;Proceedings of the DGLR Congress 2012,2012

5. First results from an ESA study on accurate orbit determination with laser tracking of uncooperative targets;Riepl;Proceedings of the 7th European Conference on Space Debris,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3