Abstract
Challenges in interference-limited satellite detection arising from the low-earth orbit (LEO) and the Industrial, Scientific and Medical (ISM) frequency bands are addressed. In particular, a novel signal presence detector based on cyclostationary signal properties is proposed and analyzed for a low signal-to-noise-plus-interference ratio (SINR) regime. The performance of the proposed detector, which is applicable to various small-satellite scenarios, is evaluated on both simulated and real-world measurement data. This measurement data has been collected from the scientific satellite mission “Picosats Realizing Orbital Propagation Calibrations using Beacon Emitters” (PROPCUBE).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ICARUS: Learning on IQ and Cycle Frequencies for Detecting Anomalous RF Underlay Signals;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17
2. SubScatter: Subcarrier-Level OFDM Backscatter;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17