Fixed-Time Distributed Event-Triggered Cooperative Guidance Methods for Multiple Vehicles with Limited Communications to Achieve Simultaneous Arrival

Author:

Gu Zhenzhen1,Wang Xugang1,Wang Zhongyuan1

Affiliation:

1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Aiming at the salvo-attack problem of multiple missiles, a distributed cooperative guidance law based on the event-triggered mechanism is proposed, which enables missiles with large differences in spatial location and velocity to achieve simultaneous attacks with only a few dozen information exchanges. It effectively reduces the generation of control commands and communication frequency, thereby reducing channel load and improving communication efficiency and reliability. Compared to traditional periodic sampling communication, the number of communications has been reduced by over 90%. The guidance process is divided into two stages. The first stage is the cooperative guidance stage, where missiles achieve consensus of the time-to-go estimates through information exchange. In this stage, each missile is designed with an event-triggered function based on its own state error, and the missile only updates and transmits its information in the communication network when the error meets the set threshold, effectively reducing the occupancy rate of missile-borne resources during the cooperation process. The second stage is the independent guidance stage, where missiles can hit the target simultaneously while keeping the communication network silent. This is achieved by ensuring that the time-to-go estimates of missiles can represent the real time-to-go after achieving consensus. By the design of the two-stage guidance law and the replacement of the event-triggered function, the cooperative guidance system can be ensured to remain stable in scenarios where the leader missile is present and destroyed, and this excludes Zeno behavior. The stability of the cooperative guidance law is rigorously proved by algebraic graph theory, matrix theory, and the Lyapunov method. Finally, the numerical simulation results demonstrate the validity of the algorithm and the correctness of the stability analysis.

Funder

Fundamental Research Funds for the Central Universities

Fundamental Strengthening Funds for the Technology Field

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3