Stealth Aircraft Penetration Trajectory Planning in 3D Complex Dynamic Environment Based on Sparse A* Algorithm

Author:

Guan Jingxin1,Huang Jun1,Song Lei1ORCID,Lu Xiaoqiang1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

To find a trajectory with low radar detection probability for stealth aircraft under the assumption of 2D space, performing a rapid turning maneuver is a useful way to reduce the radar detection probability of an aircraft by changing the azimuth angle rapidly to reduce the time of high radar cross-section (RCS) exposure to radar. However, in real flight, not only does the azimuth angle to the radar change rapidly but the elevation angle also changes rapidly, and the change in the radar cross-section is also significant in this process. Based on this premise, this paper established a trajectory planning method based on the sparse A* algorithm in a 3D complex, dynamic environment, called the 3D sparse A* method, based on a log-normal radar model (the 3D-SASLRM method), which considers the RCS statistical uncertainty and the statistical characteristics of the radar signals. Simulations were performed in both simple and complex scenarios. It was concluded that the established 3D-SASLRM method can significantly reduce the radar detection probability. And the essence of reducing under the assumption of 3D space is also to reduce the time of high radar cross-section exposure to radar.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3