Implementation of a 6U CubeSat Electrical Power System Digital Twin

Author:

Casado Pablo1ORCID,Torres Cristian1ORCID,Blanes José M.1ORCID,Garrigós Ausiàs1ORCID,Marroquí David1ORCID

Affiliation:

1. Space Power & Electronic System Research Group, University Miguel Hernández of Elche, 03202 Elche, Spain

Abstract

This paper presents the design of a digital twin for a 6U CubeSat electrical power system, including the solar arrays, solar array regulators, battery, power distribution unit, and load subsystems. The digital twin is validated by comparing its real-time outputs with those of the physical system. Experimental tests confirm its feasibility, showing that the digital twin’s real-time outputs closely match those of the physical system. Additionally, the digital twin can be used for control-hardware-in-the-loop and power-hardware-in-the-loop tests, allowing the real-time integration of simulated subsystems with hardware. This capability facilitates testing of new subsystems and optimization during the project’s development phases. Additionally, to demonstrate the advanced capabilities of this model, the digital twin is used to simulate the CubeSat electrical power system behavior in real time throughout a complete orbital cycle in low Earth orbit conditions. This simulation provides valuable insights into the CubeSat operation by capturing the transient and steady-state responses of the EPS components under real orbital conditions. The results obtained indicate that the digital twin significantly enhances the testing and optimization process of new subsystems during the development phases of the project. Moreover, the capabilities of the digital twin can be further augmented by incorporating real-time telemetry data from the CubeSat, resulting in a highly accurate replication of the satellite’s in-orbit behavior. This approach is crucial for identifying and diagnosing failures or malfunctions in the electrical power system, ensuring the robust and reliable operation of the CubeSat.

Funder

European Union NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3