Adaptive Attitude Roll Control of Guided Projectile Based on a Novel Unidirectional Global Sliding Mode Algorithm

Author:

Guo Shouyi1ORCID,Wang Liangming1,Fu Jian1

Affiliation:

1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Aimed at addressing the strong nonlinearity and strong external disturbances that cause flight control issues in conventional guided projectiles, as well as the slow response and structural vibrations that often occur in sliding mode control systems, which have a detrimental impact on the control effect and ultimate hit precision, a new type of fast and robust control algorithm with a unidirectional mode has been designed. The objective is to design an optimized aerodynamic shape for the projectile and to establish a dynamic model of the roll channel and a motion model of the entire trajectory. The dynamics of a new global terminal sliding mode are proposed, and an adaptive parameter term is realized by calculating the state of the critical sliding mode surface, which ensures that the tracking error converges within a finite time. Its combination with an adaptive approaching law is used to further speed up convergence while damping the structural vibration of the system. The bias error of the roll angle is constructed as the controller and simulation calculations are conducted on the basis of the aforementioned framework. The stability and time convergence of the control system are demonstrated through Lyapunov theory. The results indicate that, in comparison to the conventional terminal sliding mode controller, the designed controller exhibits a markedly rapid convergence rate and stronger robustness in tracking the command signal. Moreover, it also maintains a stable motion attitude of the projectile throughout the entire process. The superior control effect under different guidance schemes and the strong external disturbances also further reflect the anti-jamming capability and tracking performance of the system.

Funder

national preliminary equipment projects

Publisher

MDPI AG

Reference21 articles.

1. Review on development of technology of trajectory correction projectile;Wang;J. Ballist.,2021

2. Li, S.H., Wang, X.Y., and Ding, S.Y. (2022). Research on the Theory and Application of Sliding Mode Control, Science Press.

3. Research on dynamic aerodynamic characteristics of spin tail canard layout projectiles and arrows based on numerical virtual flight;Pang;J. Proj. Arrows Guid.,2021

4. Calculation model of normal force of canard on spin stabilized two-dimensional trajectory correction projectile;Zhong;J. Ballist.,2019

5. Control effect analysis of dual-spin projectile based on modified mass point trajectory model;Ma;Trans. Beijing Inst. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3