Abstract
A volcanic eruption can produce large ash clouds in the atmosphere around a volcano, affecting commercial aviation use of the airspace around the volcano. Encountering these ash clouds can cause severe damage to different parts of the aircraft, mainly the engines. This work seeks to contribute to the development of methods for observing the dispersion of volcanic ash and to complement computational methods that are currently used for the prediction of ash dispersion. The method presented here is based on the frequency of occurrence of the regions of airspace areas affected by ash emission during a volcanic eruption. Popocatepetl volcano, 60 km east of Mexico City is taken as a case study. A temporal wind analysis was carried out at different atmospheric levels, to identify the direction towards which the wind disperses ash at different times of the year. This information showed two different trends, related to seasons in the direction of dispersion: the first from November to May and the second from July to September. To identify the ash cloud and estimate its area, a set of 920 MODIS images that recorded Popocatepetl volcanic activity between 2000 and 2021 was used. These satellite images were subjected to a semi-automatic, digital pre-processing of binarization by thresholds, according to the level of the brightness temperature difference between band 31 (11 µm) and band 32 (12 µm), followed by manual evaluation of each binarized image. With the information obtained by the processing of the MODIS image, an information table was built with the geographical position of each pixel characterized by the presence of ash for each event. With these data, the areas around Popocatepetl volcano with the highest frequency of affectation by ash emissions were identified during the period analyzed. This study seeks to complement the results obtained by numerical models that make forecasts of ash dispersions and that are very important for the prevention of air navigation risks.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献