High-Precision Composite Control of Driving Current for Non-Contact Annular Electromagnetic Stabilized Spacecraft Subject to Multiple Disturbances

Author:

Liao He1ORCID,Yuan Haoxiang1,Xie Jinjin2

Affiliation:

1. Institute of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. College of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

Based on the design concept of dynamic and static isolation, disturbance-free payload (DFP) satellites can isolate the effects of interference on sensitive payloads, and can realize the high-precision control of the payload better than a traditional spacecraft. Among these, non-contact annular electromagnetic stabilized spacecraft (NCAESS) can effectively alleviate control output problems such as the six-degree-of-freedom coupling and nonlinear effects found in traditional non-contact spacecraft. As a key actuator, the driving current control of the non-contact annular electromagnetic actuator (NCAEA) will have a direct impact on the attitude performance of NCAESS. However, there are multiple interference effects present in the actual driving current control. Therefore, this paper proposes a composite control scheme to improve the driving accuracy by suppressing these multiple disturbances. Firstly, the variable-switching-frequency pulse-width modulation is used to adjust the switching frequency adaptively to reduce switch ripple. Secondly, feedforward compensation is employed to mitigate the back electromotive force. Thirdly, the robust Smith predictor is utilized to compensate for the digital control delay. Finally, an internal model proportional–integral controller with fuzzy rule is applied to adjust the parameters adaptively. The numerical simulation results demonstrate that the proposed approach can be adopted to enhance the robustness and dynamic response of the driving current effectively, which leads to precise control of the non-contact annular electromagnetic stabilized spacecraft.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3