Influence of Aerodynamic Interaction on Performance of Contrarotating Propeller/Wing System

Author:

Zhang Zhitao,Xie Changchuan,Huang Kunhui,Yang Chao

Abstract

This paper gives a quantitative account of the influence of slipstream on the aerodynamic performance of a contrarotating propeller (CRP)/wing system, and compares it with the CRP and clean wing. To accurately evaluate the complex aerodynamic interaction, the unsteady Reynolds-averaged Navier–Stokes approach using the sliding mesh method is performed at a typical freestream velocity of 30 m/s. Four different critical parameters, including the freestream angle of attack (AoA), axial spacing between the front propeller (FP) and rear propeller (RP), number of blades, and rotational speed, are considered in the present work. The results show that the thrust coefficient, power coefficient, and propulsion efficiency of the CRP/wing system change sharply and the difference in amplitude between adjacent waves is large. In particular, the propeller slipstream has a significant impact on the lift–drag performance of the wing in the case of a nonzero AoA. The presence of a wing also increases the efficiency of propulsion due to the recovery of vortices. In the case of a small axial spacing, the thrust coefficient value of the FP is significantly smaller than that of the RP. However, when the axial spacing exceeds a certain value, the opposite relationship is obtained. When the rotational speed increases from 3695 RPM to 8867 RPM, the lift coefficient and drag coefficient of the wing gradually increase.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3