Author:
Karpuk Stanislav,Elham Ali
Abstract
The feasibility of regional electric aviation to reduce environmental impact highly depends on technological advancements of energy storage techniques, available battery energy density, and high-power electric motor technologies. However, novel airframe technologies also strongly affect the feasibility of a regional electric aircraft. In this paper, the influence of novel technologies on the feasibility of regional electric aviation was investigated. Three game-changing technologies were applied to a novel all-electric regional aircraft: active flow control, active load alleviation, and novel materials and structure concepts. Initial conceptual design and mission analysis of the aircraft was performed using the aircraft design framework SUAVE, and the sensitivity of the most important technologies on the aircraft characteristics and performance were studied. Obtained results were compared against a reference ATR-72 aircraft. Results showed that an all-electric aircraft with airframe technologies might be designed with the maximum take-off weight increase of 50% starting from the battery pack energy density of 700 Wh/kg. The overall emission level of an all-electric aircraft with novel technologies is reduced by 81% compared to the ATR-72. On the other hand, novel technologies do not contribute to the reduction in Direct Operating Costs (DOC) starting from 700 Wh/kg if compared to an all-electric aircraft without technologies. An increase in DOC ranges from 43% to 30% depending on the battery energy density which creates a significant market obstacle for such type of airplanes. In addition, the aircraft shows high levels of energy consumption which concerns its energy efficiency. Finally, the sensitivity of DOC to novel technologies and sensitivities of aircraft characteristics to each technology were assessed.
Funder
Deutsche Forschungsgemeinschaft
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献