Abstract
The Stewart platform, a classical mechanism proposed as the parallel operation apparatus of robots, is widely used for vibration isolation in various fields. In this paper, a design integrating both small attitude control and vibration isolation for high-precision payloads on board satellites is proposed. Our design is based on a Stewart platform equipped with voice-coil motors (VCM) to provide control force over the mechanism. The coupling terms in the dynamic equations of the legs are removed as the total disturbance by the linear active disturbance rejection control (LADRC). Attitude maneuver and vibration isolation performance is verified by numerical simulations.
Funder
National Natural Science Foundation of China
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献