Abstract
Relative motion control problem for capturing the tumbling space debris object is considered. Onboard thrusters and reaction wheels are used as actuators. The nonlinear coupled relative translational and rotational equations of motion are derived. The SDRE-based control algorithm is applied to the problem. It is taken into account that the thrust vector has misalignment with satellite center of mass, and reaction wheels saturation affects the ability of the satellite to perform the docking maneuver to space debris. The acceptable range of a set of control system parameters for successful rendezvous and docking is studied using numerical simulations taking into account thruster discreteness, actuators constrains, and attitude motion of the tumbling space debris.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献