Guidance Design for Escape Flight Vehicle against Multiple Pursuit Flight Vehicles Using the RNN-Based Proximal Policy Optimization Algorithm

Author:

Hu Xiao12,Wang Hongbo2,Gong Min2,Wang Tianshu1ORCID

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

2. China Academy of Launch Vehicle Technology, Beijing 100076, China

Abstract

Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals; thus, guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on the DRL technique, while the pursuit flight vehicles (PFVs) derive their guidance commands employing the proportional navigation method. For every PFV, the evasion distance is described as the minimum distance between the EFV and the PFV during the escape-and-pursuit process. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, which is described as the EFV’s velocity when the last evasion distance is attained, subject to the constraint imposed by the given evasion distance threshold. In the outlined problem, three dimensionalities of uncertainty emerge: (1) the number of PFVs requiring evasion at each time instant; (2) the precise time instant at which each of the evasion distances can be attained; (3) whether each attained evasion distance exceeds the given threshold or not. To solve the challenging problem, we propose an innovative solution that integrates the recurrent neural network (RNN) with the proximal policy optimization (PPO) algorithm, engineered to generate the guidance commands of the EFV. Initially, the model, trained by the RNN-based PPO algorithm, demonstrates effectiveness in evading a single PFV. Subsequently, the aforementioned model is deployed to evade additional PFVs, thereby systematically augmenting the model’s capabilities. Comprehensive simulation outcomes substantiate that the guidance design method based on the proposed RNN-based PPO algorithm is highly effective.

Publisher

MDPI AG

Reference29 articles.

1. Design and Analysis of State Feedback Optimal Strategies for the Differential Game of Active Defense;Garcia;IEEE Trans. Autom. Control,2019

2. Nonsingular Impact Time Guidance and Control Using Deviated Pursuit;Sinha;Aerosp. Sci. Technol.,2021

3. Multiconstrained Real-time Entry Guidance Using Deep Neural Networks;Cheng;IEEE Trans. Aerosp. Electron. Syst.,2021

4. State-Following-Kernel-Based Online Reinforcement Learning Guidance Law against Maneuvering Target;Peng;IEEE Trans. Aerosp. Electron. Syst.,2022

5. Cooperative Online Guide-launch-guide Policy in a Target-missile-defender Engagement Using Deep Reinforcement Learning;Shalumov;Aerosp. Sci. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3