Aerodynamic Characteristics of the Novel Two-Dimensional Enhanced Shock Vector Nozzle

Author:

Shu Bowen12,Gao Zhenghong12,Huang Jiangtao2,He Chengjun2,Zheng Haibo12,Xia Lu1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Aerospace Technology Institution, China Aerodynamic Research and Development Center, Mianyang 621000, China

Abstract

Fluid thrust vectoring (FTV) control has obvious advantages in structural quality and stealth performance because of its fast response and light weight. However, improving FTV vector performance will cause a loss in engine performance due to the need to draw airflow from the engine. In order to alleviate the above problems and further improve the vector performance of FTV, a nozzle combined with throat skewing and shock vector control is proposed, and the secondary flow of the nozzle comes from the throat and is injected into the nozzle divergence section. The numerical results indicate that compared with the original configuration, the vector angle and vector efficiency of the new configuration are more linear with the nozzle pressure ratio (NPR), and the vector angle and vector efficiency are improved by 163% and 218%, respectively, while experiencing a maximum reduction in the thrust coefficient of 1.4%. Compared with the only bypass-type shock vector nozzle, the new configuration utilizes the diversion of the two jets to eliminate the reattachment of the separation bubble after the jet and its resulting abrupt change in vector performance, improving the performance while having good control characteristics. Additionally, a sensitivity analysis of the spacing between two jets is also carried out. The spacing between two jets should be increased to make the flow pass through two weaker shock waves to improve the vector performance while ensuring that the separation after the jet is no longer attached.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3