An Innovative External Heat Flow Expansion Formula for Efficient Uncertainty Analysis in Spacecraft Earth Radiation Heat Flow Calculations

Author:

Fu Xiaoyi1,Hua Yuntao1,Ma Wenlai1,Cui Hutao1,Zhao Yang1

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Abstract

Thermal uncertainty analysis of spacecraft is an important method to avoid overdesign and underdesign problems. In the context of uncertainty analysis, thermal models representing multiple operating conditions must be invoked repeatedly, leading to substantial computational costs. The ray tracing calculation of Earth infrared and albedo radiation heat flux is an important reason for the slow calculation speed. As the rays emitted during external heat flux calculations under different operating conditions are independent and unconnected, the rays produced across various conditions are effectively wasted. In this study, the external heat flow equation is thoroughly expanded and the derived factors are clustered and analyzed to develop a novel formula for calculating external heat flow. When this formula is employed to compute the uncertain external heat flux, only one condition necessitates ray tracing, while the remaining conditions utilize simple matrix operations in place of complex ray tracing. Within the aforementioned procedure, certain matrices demonstrate sparse characteristics. The optimization calculations for these matrices can, therefore, benefit from the application of sparse matrix optimization algorithms. Using a spacecraft as an example, the uncertain external heat flux calculation outcomes of the new and traditional formulas are compared and assessed. The findings reveal that the new formula is highly suitable for estimating uncertain Earth radiation heat flow, with a marked improvement in efficiency. The accuracy is essentially equivalent to that of the traditional formula and the calculation precision can be dynamically adjusted to meet user requirements. The methodology can be further generalized to assess the uncertainties associated with radiative external heat fluxes for other celestial bodies within the solar system. This offers a valuable theoretical framework for addressing the uncertainties in the thermal design of deep space exploration vehicles.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference29 articles.

1. Donabedian, M. (1991, January 24–26). Thermal uncertainty margins for cryogenic sensor systems. Proceedings of the 26th Thermophysics Conference, Honolulu, HI, USA.

2. Comparison of recent satellite flight temperatures with thermal model predictions;Welch;SAE Trans.,2006

3. Temperature variance in spacecraft thermal analysis;Ishimoto;J. Spacecr. Rockets,1968

4. Monte Carlo treatment of data uncertainties in thermal analysis;Howell;J. Spacecr. Rockets,1973

5. Margin determination in the design and development of a thermal control system;Thunnissen;SAE Trans.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3