Abstract
Dynamic soaring is a non-powered flight mode that enables extremely high speeds by extracting energy from thin shear wind layers. Trajectory optimization is applied to construct solutions of the maximum speed achievable with dynamic soaring and to determine characteristic properties of that flight mode, using appropriate models of the vehicle dynamics and the shear wind layer. Furthermore, an energy-based flight mechanics model of high-speed dynamic soaring is developed, with reference made to trajectory optimization. With this model, analytic solutions for high-speed dynamic soaring are derived. The key factors for the maximum speed performance are identified and their effects are determined. Furthermore, analytic solutions for other, non-performance quantities of significance for high-speed dynamic soaring are derived. The analytic solutions virtually agree with the results achieved with the trajectory optimization using the vehicle dynamics model. This is considered a validation of the energy-based model yielding analytic solutions. The analytical solutions are also valid for the high subsonic Mach number region involving significant compressibility effects. This is of importance for future developments in high-speed dynamic soaring, as modern gliders are now capable of reaching that Mach number region.
Reference22 articles.
1. Experimentelle Untersuchungen über den Segelflug Mitten im Fluggebiet Großer Segelnder Vögel (Geier, Albatros usw.)—Ihre Anwendung auf den Segelflug des Menschen;Idrac,1932
2. A Mathematical Analysis of the Dynamic Soaring Flight of the Albatross with Ecological Interpretations;Cone,1964
3. Minimum shear wind strength required for dynamic soaring of albatrosses
4. Experimental verification of dynamic soaring in albatrosses
5. High-Speed Dynamic Soaring;Richardson;R/C Soar. Dig.,2012
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献