The Impact of Upstream Static Deformation on Flow Past a Cylinder/Flare

Author:

Becks Aaron1ORCID,Korenyi-Both Tyler1,McNamara Jack J.1,Gaitonde Datta V.1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210-1276, USA

Abstract

Reynolds-averaged Navier–Stokes simulations are performed for supersonic turbulent flow over a cylinder/flare with upstream surface distortion representative of structural deformation induced via fluid–structural and fluid–thermal–structural behavior. Broad parametric analysis is carried out through the generation of Kriging-response surfaces from a database of general simulations. A posteriori simulations are then carried out at parametric combinations that correspond to extrema in the Kriging response surfaces to gain deeper insights into the interaction between the surface distortion and flow responses. Upstream distortions tend to decrease, rather than increase, the peak pressure and heat flux loads on the flare compared to an undeformed cylinder. Furthermore, decreases in these quantities reach up to O(10%) compared to up to O(1%) for increases. Integrated quantities over the flare are relatively insensitive to upstream distortion. The corner separation length is the most sensitive quantity to upstream distortion, with protrusions tending to increase the separation length and recessions reducing the separation length. Modifications in the separation length of up to 40% are observed. Reductions in peak loads tend to correspond to increases in the corner separation length. The movement of the surface distortion relative to the corner indicates a negligible impact beyond 1.5 distortion lengths from the corner, and the largest impact on the corner separation length occurs when distortion is directly adjacent. These results are an important step toward understanding and quantifying the impact of surface deformations on downstream components.

Funder

Air Force Research Lab

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3