Multi-Objective Design of a Distributed Ducted Fan System

Author:

Guo Jiahao,Zhou Zhou

Abstract

The distributed propulsion system applied to the vertical take-off and landing aircraft must maintain the high performance in both hover and cruise flight. The gap of the power unit has an adverse effect on the distributed ducted fan system, especially in cruise flight. Therefore, a new distributed ducted fan system was proposed, which eliminated the power gap in design, and adjusted the contraction and expansion of the wake through the deflectable induced wing arranged behind the ducted fan to ensure the high efficiency of the distributed ducted fan system in different flight phases. Then, a multi-objective design method of the distributed ducted fan system was proposed, and the feasibility of the design method was verified by designing the inlet and outlet of the duct and the induced wing. Design results show that the performance change of the distributed ducted fan system mainly came from the change of the inlet. By increasing the length and height of the inlet, the flow separation was alleviated and the duct thrust was increased in hove flight, but the cruise drag became larger. The increase of the inlet height made the operating point of the blade far away in hover and cruise flight, which increased the difficulty of the multi-objective design. Compared with the distributed ducted fan system composed of the traditional circular ducted fan, the hovering power load was reduced by 3.703%, but the cruise efficiency was increased by 17.372%, and the spanwise space was reduced by 20% in the final design.

Funder

Civil Aircraft Specific Project of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference25 articles.

1. The Jet Airplane Utilizing Boundary Layer Air for Propulsion

2. Assessment of the Potential Advantages of Distributed-Propulsion for Aircraft. ISABE 2003–1094https://www.researchgate.net/publication/238191818_Assessment_of_the_Potential_Advantages_of_Distributed_Propulsion_for_Aircraft

3. Drag Reduction Through Distributed Electric Propulsion

4. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft

5. A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3