Thermoelastic Response of Closed Cylindrical Shells in a Supersonic Gas Flow

Author:

Mikilyan Marine

Abstract

The work is devoted to the investigation of flutter oscillations and the stability of the closed cylindrical shell in supersonic gas flow in an inhomogeneous temperature field. It is assumed that supersonic gas flows on the outside of the shell with an unperturbed velocity U, directed parallel to the cylinder generatrix. Under the action of an inhomogeneous temperature field the shell bulges out, this deformed state is accepted as unperturbed, and the stability of this state is studied. The main nonlinear equations and relationships describing the behavior of the examined system are derived. The formulated boundary value problem is solved using the Galerkin method. The joint influence of the flow and the temperature field on the relationship between the amplitude of nonlinear oscillations of a cylindrical shell and the speed of the flowing stream is studied. The critical velocity values are calculated from the corresponding linear system and are given in tables. The numerical results show that: (a) the surrounding flow significantly affects the nature of the investigated relationship; (b) a certain interval of supersonic velocity exists where it is impossible to excite steady-state flutter oscillations (the silence zone); (c) the dependence of amplitude on the supersonic velocity can be either multivalued or single-valued.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3