Affiliation:
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
Abstract
Deaf and hearing-impaired people always face communication barriers. Non-invasive surface electromyography (sEMG) sensor-based sign language recognition (SLR) technology can help them to better integrate into social life. Since the traditional tandem convolutional neural network (CNN) structure used in most CNN-based studies inadequately captures the features of the input data, we propose a novel inception architecture with a residual module and dilated convolution (IRDC-net) to enlarge the receptive fields and enrich the feature maps, applying it to SLR tasks for the first time. This work first transformed the time domain signal into a time–frequency domain using discrete Fourier transformation. Second, an IRDC-net was constructed to recognize ten Chinese sign language signs. Third, the tandem CNN networks VGG-net and ResNet-18 were compared with our proposed parallel structure network, IRDC-net. Finally, the public dataset Ninapro DB1 was utilized to verify the generalization performance of the IRDC-net. The results showed that after transforming the time domain sEMG signal into the time–frequency domain, the classification accuracy (acc) increased from 84.29% to 91.70% when using the IRDC-net on our sign language dataset. Furthermore, for the time–frequency information of the public dataset Ninapro DB1, the classification accuracy reached 89.82%; this value is higher than that achieved in other recent studies. As such, our findings contribute to research into SLR tasks and to improving deaf and hearing-impaired people’s daily lives.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献