A Multi-Target Localization and Vital Sign Detection Method Using Ultra-Wide Band Radar

Author:

Zhang Jingwen1,Qi Qingjie1,Cheng Huifeng1,Sun Lifeng1,Liu Siyun1ORCID,Wang Yue1,Jia Xinlei1

Affiliation:

1. Emergency Research Institute, Chinese Institute of Coal Science CICS, Beijing 100013, China

Abstract

Life detection technology using ultra-wideband (UWB) radar is a non-contact, active detection technology, which can be used to search for survivors in disaster rescues. The existing multi-target detection method based on UWB radar echo signals has low accuracy and has difficulty extracting breathing and heartbeat information at the same time. Therefore, this paper proposes a new multi-target localization and vital sign detection method using ultra-wide band radar. A target recognition and localization method based on permutation entropy (PE) and K means++ clustering is proposed to determine the number and position of targets in the environment. An adaptive denoising method for vital sign extraction based on ensemble empirical mode decomposition (EEMD) and wavelet analysis (WA) is proposed to reconstruct the breathing and heartbeat signals of human targets. A heartbeat frequency extraction method based on particle swarm optimization (PSO) and stochastic resonance (SR) is proposed to detect the heartbeat frequency of human targets. Experimental results show that the PE—K means++ method can successfully recognize and locate multiple human targets in the environment, and its average relative error is 1.83%. Using the EEMD–WA method can effectively filter the clutter signal, and the average relative error of the reconstructed respiratory signal frequency is 4.27%. The average relative error of heartbeat frequency detected by the PSO–SR method was 6.23%. The multi-target localization and vital sign detection method proposed in this paper can effectively recognize all human targets in the multi-target scene and provide their accurate location and vital signs information. This provides a theoretical basis for the technical system of emergency rescue and technical support for post-disaster rescue.

Funder

Chinese Institute of Coal Science Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UTIL: An ultra-wideband time-difference-of-arrival indoor localization dataset;The International Journal of Robotics Research;2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3