Comparative Analysis of MCDA Techniques for Identifying Erosion-Prone Areas in the Burhanpur Watershed in Central India for the Purposes of Sustainable Watershed Management

Author:

Patel Abhishek12ORCID,Ramana Rao K. V.2,Rajwade Yogesh A.2ORCID,Saxena Chandra Kant2ORCID,Singh Karan2,Srivastava Ankur3ORCID

Affiliation:

1. ICAR-Central Arid Zone Research Institute, Regional Research Station, Bhuj 370105, India

2. ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India

3. School of Life Sciences, Faculty of Science, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia

Abstract

The degradation of land and increasing water scarcity are existing challenges for agricultural sustainability, necessitating the implementation of improved soil-conservation practices at the watershed scale. The identification and selection of critical/prone areas based on erosion-governing criteria is essential and helps in the execution of the management process for determining priority. This study prioritizes erosion-prone sub-watersheds (alternatives) based on morphometric parameters (multiple criteria) via five Multi-Criteria Decision Analysis (MCDA) approaches, i.e., AHP: Analytical Hierarchy Process; TOPSIS: Technique for Order of Preference by Similarity to Ideal Solution; VIKOR: VIseKriterijumska Optimizacija I Kompromisno Resenje; SAW: Simple Additive Weighting; and CF: Compound Factor. Based on their priority score, 19 sub-watersheds were classified into four priority classes: low priority (0–0.25), moderate priority (0.25–0.50), high priority (0.50–0.75), and very high priority (0.75–1). The results revealed that about 8.34–30.15% area of the Burhanpur watershed is critically prone to erosion, followed by 23.38–52.05% area classed as high priority, 7.47–49.99% area classed as moderate priority, and 10.33–18.28% area classed as low priority. Additionally, four indices—percentage of changes (∆P), intensity of changes (∆I), the Spearman rank correlation coefficient test (SCCT), and the Kendall tau correlation coefficient test (KTCCT)—were employed to compare the models. This study confirms the efficacy of morphometric parameters for prioritizing sub-watersheds to preserve soil and the environment, particularly in areas for which limited information is available.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3