Occurrence Assessment of Pharmaceuticals in Various Sewage Treatment Plants and Effluent-Receiving Streams in Korea

Author:

Son Dong-Jin12,Kim Chang-Soo1,Lee Jae-Ho1,Yoon Jeong-Ki1,Lee Soo-Hyung1,Jeong Dong-Hwan1

Affiliation:

1. Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea

2. Division of Monitoring and Analysis, Yeongsan River Basin Environmental Office, Gwangju 61945, Republic of Korea

Abstract

The occurrence of micropollutants, including pharmaceuticals, personal care products, pesticides, and hormones in various aquatic ecosystems is a matter of grave concern due to their possible repercussions on human and wildlife endocrine systems. The wastewater containing pharmaceuticals from various sites is usually introduced to sewage treatment plants (STPs); therefore, monitoring of pharmaceuticals in STPs is crucial. In this study, we determined the occurrence of 58 pharmaceuticals in the influent and effluent of 13 STPs based on regional and linked wastewater differences and investigated their removal rates. Furthermore, we assessed the contribution rates of some STP effluents on pharmaceutical concentration in the upstream and downstream areas of the discharge source. Different kinds of pharmaceuticals were measured in the STPs. The top five pharmaceuticals with high concentrations in the influent of each STP were similar due to the dominance of domestic sewage in the influent. The average concentration of acetaminophen, caffeine, acetylsalicylic acid, naproxen, and ibuprofen in the influent of the STPs was higher than that of other pharmaceuticals, and their removal was 94–100%. In contrast, iopamidol, cimetidine, diphenhydramine, and carbamazepine showed a high average concentration in the effluent. The monitoring results of nine streams near STPs indicated that the effluent could contribute to the increase in the types of pharmaceuticals in the receiving streams. The detected pharmaceuticals’ types were 9–29 and 17–33 in the upstream and downstream areas, respectively, of STP discharge channels. Based on flowrate data, the contribution rate of the STP effluent on the stream was −69–326%.

Funder

National Institute of Environmental Research, Republic of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3