A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE †

Author:

Agis DavidORCID,Pozo FrancescORCID

Abstract

This work presents a structural health monitoring (SHM) approach for the detection and classification of structural changes. The proposed strategy is based on t-distributed stochastic neighbor embedding (t-SNE), a nonlinear procedure that is able to represent the local structure of high-dimensional data in a low-dimensional space. The steps of the detection and classification procedure are: (i) the data collected are scaled using mean-centered group scaling (MCGS); (ii) then principal component analysis (PCA) is applied to reduce the dimensionality of the data set; (iii) t-SNE is applied to represent the scaled and reduced data as points in a plane defining as many clusters as different structural states; and (iv) the current structure to be diagnosed will be associated with a cluster or structural state based on three strategies: (a) the smallest point-centroid distance; (b) majority voting; and (c) the sum of the inverse distances. The combination of PCA and t-SNE improves the quality of the clusters related to the structural states. The method is evaluated using experimental data from an aluminum plate with four piezoelectric transducers (PZTs). Results are illustrated in frequency domain, and they manifest the high classification accuracy and the strong performance of this method.

Funder

Generalitat de Catalunya

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Accuracy Airborne Rangefinder via Deep Learning Based on Piezoelectric Micromachined Ultrasonic Cantilevers;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2024-09

2. Scatterplot selection for dimensionality reduction in multidimensional data visualization;Journal of Visualization;2024-08-23

3. Industrial Fault Detection Employing Meta Ensemble Model Based on Contact Sensor Ultrasonic Signal;Sensors;2024-04-04

4. t-SNE Based on Halton Sequence Initialized Butterfly Optimization Algorithm;2023 IEEE 13th International Conference on Electronics Information and Emergency Communication (ICEIEC);2023-07-14

5. Ensemble of feature extraction methods to improve the structural damage classification in a wind turbine foundation;Bulletin of the Polish Academy of Sciences Technical Sciences;2023-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3