Room-Temperature Nitric Oxide Gas Sensors Based on NiO/SnO2 Heterostructures

Author:

Gagaoudakis Emmanouil1ORCID,Tsakirakis Apostolos12ORCID,Moschogiannaki Marilena12ORCID,Sfakianou Angeliki13,Binas Vassilios134ORCID

Affiliation:

1. Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 700 13 Heraklion, Greece

2. Department of Materials Science and Technology, University of Crete, 700 13 Herakleion, Greece

3. Department of Physics, University of Crete, 700 13 Herakleion, Greece

4. Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

Abstract

Nitric oxide (NO) is a very well-known indoor pollutant, and high concentrations of it in the atmosphere lead to acid rain. Thus, there is great demand for NO sensors that have the ability to work at room temperature. In this work, NiO/SnO2 heterostructures have been prepared via the polyol process and were tested against different concentrations of NO gas at room temperature. The structural and morphological characteristics of the heterostructures were examined using X-ray diffraction and scanning electron microscopy, respectively, while the ratio of NiO to SnO2 was determined through the use of energy-dispersive spectrometry. The effects of both pH and thermal annealing on the morphological, structural and gas-sensing properties of the heterostructure were investigated. It was found that the morphology of the heterostructures consisted of rod-like particles with different sizes, depending on the temperature of thermal annealing. Moreover, NiO/SnO2 heterostructures synthesized with pH = 8 and annealed at 900 °C showed a response of 1.8% towards 2.5 ppm NO at room temperature. The effects of humidity as well as of stability on the gas sensing performance were also investigated.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3